Phantom-read problem in semi-sync replication

1. Bug description
Following is a loss-less semi-sync principle picture from

http://my-replication-life.blogspot.co.uk/2013/09/loss-less-semi-synchronous-replication.html

User THD Dump THD |0 THD |

COMMIT + S
————p Write

P POD— Y

? ACK Request Queue ; _Send Events I

; i Without ACK m-qu";

; o= i g Relay Log

: : Sepd Event .

: Wait T With ACK Reques| 1 *

ACK " atestACK ACK

OK —>| f]

- :

' Engine Commit

Master Slave

The bug can be recured in a cluster with rpl_semi_sync_master_wait_slave_count > 0 if
master restart before “Engine Commit” phase. During the restart, the last binlog events will
be committed without slave’s ack. A phantom-read problem can be recurrenced now:

Any clients will read this events successfully on master. But these clients will not read
them on slave if master crash down in a very small period.(slave is switched into master
manually or automatically).

This problem can also be found on the above article:

To make the crashed master server before MySQL 5.7.2 to work again, users need to:

1. Manually truncate the binlog events which are not replicated.
Z_ Tanually Tolback The Transactions WRICh are commitied DY not replicated.

Since this feature guarantees all committed transactions are replicated already, 50 2nd step is not
needed any more.

N

. Bug recurrence
1. Install semi-sync on both master and slave.
Master:

“II: ' " " w oy -
| INNODB_CHANGED_PAGES | ACTIVE | INFDRHQTIDN SEHEHQ GPL

partition | ACTIVE | STORAGE ENGINE GPL
| rpl_semi_sync_master | ACTIVE | REPLICATION semisync_master.so GPL

http://my-replication-life.blogspot.co.uk/2013/09/loss-less-semi-synchronous-replication.html
http://my-replication-life.blogspot.co.uk/2013/09/loss-less-semi-synchronous-replication.html

'y " I‘ L] ra !I -
| ACTIVE | STORAGE ENGINE NULL | GPL

| rpl_semi_sync_slave | ACTIVE | REPLICATION | semisync_slave.so | GPL
e —— — — S +

2. Execute ‘Insert into bug_table values(1);’
Master status:

mysql> create table bug_table { cl1 int);
Query 0K, 0 rows affected (0.04 sec)

mysql> insert into bug_table valuesiil);
Query 0K, 1 row affected (0.00 sec)

mysgl> select * from bug_ table;

1 row in set {(0.00 sec)

Slave status:

Database changed
mysql> select * from bug_table;

1 row in set {(0.00 sec)

3. client connects to master and sends ‘Insert into bug_table values(2);’
(we made master restarted while executing this SQL(after binlog is written)).
mysgl> Insert into bug table values(Z2);

ERROR 2?13 {HY000): Lost connection to MySQL serwver during gquery
mysqgl>

4 .client reconnect to master and execute ‘select * from bug_table;’

Database changed
mysql> select % from bug_table;

rows in set (0.00 sec)

Here we can see value 2 was been inserted in Storage Engine.
5.kill mysql again and makes it always dead.

ERROR 2003 (HY000): Can’t connect to MySQL server on “10.121.105.161° (111)

4. Now, client have to read from slave, execute ‘select * from bug_table’ on slave.

mysql > select * from bug_table;

row in set (0.00 sec)

The result shows client meets a phantom-read problem.

3. Solution suggestion
Offer a new hook point to solve this problem.
A)A hook point after binlog opened.
Semi-sync could wait for the slave ack while recovery.

B)A hook point before binlog initilization.
Rollback the binlog event if necessary.

4. PhxSQL as a sample.
We implemented solution B in PhxSQL cluster
https://github.com/tencent-wechat/phxsql/tree/master/phx_percona/percona/sdql

Binlog_storage_delegate

lic Delegate {

Binlog storage_delegate()
Delegate(

key_rwlock_Binlog_storage_delegate_lock
)

Binlog_storage_observer Observer;
after_flush(THD *thd,
*dir_path,
*prev_log file,
my_off_t prev_log pos,
*log_file,
my_off_t log pos);

before binlog init(THD *thd, * server_uuid,
PSI_file key * key file binlog_index,
* log_bin_index);

https://github.com/tencent-wechat/phxsql/tree/master/phx_percona/percona/sql

We do hope this solution be accepted officially.

