
The problematic source codes 

In short, a child thread accessing memory that’s been freed by main thread causes heap-use-
after-free. 
I’m going to present what main thread and the child thread do respectively. 

What does main threads do? 

See figure below, it’s a section of init_server_components and the main thread 
1. calls plugin_register_dynamic_and_init_all to initialize plugins and child thread is to be 

created. We’ll see what the child thread does in next section. 
2. calls disable_resource_group if thread_handling != one-thread-per-connection. 

 

What’s in disable_resource_group? 

See the following 3 figures. 
The main thread calls disable_resource_group to release m_resource_group_hash. 
m_sys_default_resource_group and m_usr_default_resource_group are freed as they are 
owned by m_resource_group_hash. 



 

 

So far, we know that the main thread releases m_sys_default_resource_group. We are going 
to see how the child thread could access the released memory. 

What does the child thread do? 

Following the preceding section, we know the main thread calls 
plugin_register_dynamic_and_init_all and child thread is to be created. 
The figures below are simplified call stacks and you can refer asan-8.0.20.txt for details. 



 
plugin_register_dynamic_and_init_all makes preparations and calls my_thread_create to 
create a child thread factually. Let’s see what’s in my_thread_create. 

What’s in my_thread_create? 

See figures below. 
my_thread_create calls pfs_notify_thread_create so that PFS knows the newly created thread. 
resourcegroups::thread_create_callback gets a reference to 
m_sys_default_resource_group.m_name and passes it to set_thread_resource_group. 
set_thread_resource_group copies from the memory pointed by 
m_sys_default_resource_group.m_name.c_str(), which could’ve been freed by the main thread 
in function Resource_group_mgr::deinit. 

 

 



 

Thread concurrency 

Main thread releasing m_resource_group_hash and child thread accessing 
m_sys_default_resource_group are not controlled. 
Heap-use-after-free takes place if main thread and child thread proceed in such an order: 
1. [main thread] plugin_register_dynamic_and_init_all. Child thread is created. 
2. [child thread] thread_create_callback. A reference to 

m_sys_default_resource_group.m_name.c_str() is acquired and passed down. 
3. [main thread] Resource_group_mgr::deinit. m_resource_group_hash is released. 
4. [child thread] set_thread_resource_group. Tries to memcpy from 

m_sys_default_resource_group.m_name.c_str() that has been released. 

Why mtr on original code works well 

1. One precondition of this problem is that thread_handling isn’t one-
thread-per-connection. But it is one-thread-per-connection mostly in 
mtr, because mtr config files, like `mysql-
test/include/default_mysqld.cnf`, don't assign thread_handling 
explicitly, then it's as the default value defined in sql/sys_vars.cc. 



 

(the reason why thread_handling can’t be one-thread-per-connection has 
been given above.) 

2. CPU and scheduling matters. Considering that thread_handling is not 
one-thread-per-connection, if child threads have always finished 
memcpy before main thread frees the memory, this problem would not 
happen. It’s totally up to CPU performance and thread scheduling, and 
it’s difficult to control CPU and scheduling manually. This is what 
makes the problem hard to reproduce. 

3. Is ASAN on? 

Why repeat-8.0.20.patch is 

reasonable 

1. repeat-8.0.20.patch slows down the child thread, so that the main thread calls 
Resource_group_mgr::deinit before the child thread calls set_thread_resource_group, 
which makes the heap-use-after-free observable. 

2. If there is a concurrency control, no matter how much child thread is slowed down, heap-
use-after-free should never happen. 

 

Why fix-8.0.20.patch works 

fix-8.0.20.patch doesn’t use lock or anything like that to do the exclusion. Instead, it avoids 
the concurrency problem. 
m_sys_default_resource_group.m_name is a constant “SYS_default” and 
m_usr_default_resource_group.m_name is a constant “USR_default”. So 
get_sys_default_resource_group_name() and get_usr_default_resource_group_name() , 
returning “SYS_default” and “USR_default” directly and respectively, are introduced. 


	The problematic source codes
	The problematic source codes
	What does main threads do?
	What does main threads do?
	What’s in disable_resource_group?
	What’s in disable_resource_group?

	What does the child thread do?
	What does the child thread do?
	What’s in my_thread_create?
	What’s in my_thread_create?

	Thread concurrency
	Thread concurrency

	Why mtr on original code works well
	Why mtr on original code works well
	Why repeat-8.0.20.patch is reasonable
	Why repeat-8.0.20.patch is reasonable
	Why fix-8.0.20.patch works
	Why fix-8.0.20.patch works

