
Manual

Feature Introduction

This feature maintains each data version generated during MySQL running, and provides SQL
to easily trace back to the historical version.

SQL

Create Temporal Table

CREATE TABLE [IF NOT EXISTS] tbl_name (create_definition,...)[table_options][WITH
TEMPORAL]

table_options:
 table_option[[,] table_option] ...
table_option:
 AUTO_INCREMENT [=] value
 | ...

 | HIST_TABLESPACE [=] value
- WITH TEMPORAL: Create two tables at the same time, tbl_name stores the latest data

versions and is called current table. tbl_name_history stores the historical versions and is
called history table.

- HIST_TABLESPACE [=] value：The tablespace of tbl_name_history. The default ibhistory
tablespace is used if HIST_TABLESPACE is not given.

- CREATE LIKE, CREATE SELECT, TEMPORARY and PARTITION are not supported.

 name of history table = name of current table + _history postfix
 The schema of history table is the same as the one of current table.
 DML/DDL/DQL on history table and DDL on current table are prohibited.
 History and current tables sharing a single tablespace is not recommended.
 DML on current table results in old versions to be restored in history table.

Example：

Create table

History table can’t be accessed directly

Temporal Query

Temporal query retrieves data versions from current and history table. see SQL:2011 for more
about temporal query.

SELECT
[ALL | DISTINCT | DISTINCTROW] ...
select_expr [, select_expr ...]
[FROM table_references [WHERE where_condition] ...]

table_references:
 tbl_name [[AS] alias] [index_hint_list] [temporal_hint]

temporal_hint:
 SYSTEM TIME AS OF value [ONLY HISTORY]
 | SYSTEM TIME FROM value1 TO value2 [ONLY HISTORY]

 | SYSTEM TRANSACTION value [ONLY HISTORY]
- tbl_name is a current table.
- temporal_hint is only supported in select. table_references with temporal_hint in update

or delete raises error.
- ONLY HISTORY queries history table only, while current table is skipped.
- Illustrate the semantics of temporal_hint with the diagram below.

A sketch diagram is given for the purpose of illustration and is not what MySQL client
displays.

DML on current table

Pk Version Begin Tid End Tid Begin ts End ts

1 V0 2000 2003 T0 T1

1 V1 2003 2004 T1 T3

1 V2 2004 T3

Pk represents a user record.
Version represents a unique data version of the user record.
Begin Tid and End Tid are the transactions which created and removed the data version.
Begin ts and Edn ts are the timestamp when Begin Tid and End Tid were committed.

 AS OF value. A time-point query retrieves the data version which was/is in current

state at the value time. For example,
select * from t system time as of T2 where pk=1 gets V1
select * from t system time as of T1 where pk=1 gets V1. V0 is a history version at
T1.

 FROM value1 TO value2. A time-range query retrieves the data versions was/is in
current state during value1~value2 time. It requires a data version’s lifetime overlaps
the given time range.
select * from t system time from T0 to T2 where pk=1 gets V0 and V1，because
[V0.BeginTs, V0.EndTs) ∩ [T0, T2] ≠ø，[V1.BeginTs, V1.EndTs) ∩ [T0, T2] ≠ø

 TRANSACTION value. Transaction ID query retrieves the data versions created or
removed by this transaction.
select * from t system transaction 2003 where pk=1 gets V0 and V1. Transaction
2003 removed V0 and created V1.

 MySQL Client Examples

Time-Point Query

Data versions in the current table are (1,2), (3,3)
Data versions are (1,2), (3,3), (2,2) at 11:57:48, update t set b=b+1 where a=1 has been

committed then, while delete from t where a=2 has not been done.
11:57:40 时刻版本为(3,3),(1,1),(2,2)，当时 update 与 delete 都未执行
Data versions are (3,3), (1,1), (2,2) at 11:57:40, update and delete have been done then.

Time-Range Query:
a. All date versions are (1,2), (3,3), (1,1), (2,2) from 11:00:00 to 12:00:00.
b. With ONLY HISTORY keywords, (1,1), (2,2) are retrieved from history table. (1,2) and

(3,3) are not returned because they are in current table.

Transaction ID Query:
Transaction 2675 carried out update t set b=b+1 where a=1, which removed (1,1) and

created (1,2).
Transaction 2678 carried out delete from t where a=2, which removed (2,2).

Wrong Use:
a. A ordinary table doesn’t support temporal query.
b. Non-select statement on a current table doesn’t support temporal query.
c. Can not access history table directly.

Transaction Status Query

Statuses of all transactions are maintained and readable.

TRXTOTIME(val1, val2, val3)

- val1 is transaction id in string format. val2 and val3 are decimals.
- Get the statuses of transactions whose ids are from [val1-val2, val1+val3], i.e.,

TRXTOTIME(“2003”, 1, 1) gets transaction 2002, 2003, 2004, and 2005.
- Transaction Status includes 4 fields: TRX_ID is the transaction id. START_TIME is when the

transaction began. FINISH_TIME is when the transaction committed or aborted. STATUS
is the current status of the transaction, which is one of {INPROGRESS, COMMITTED,
ABORTED, UNDO}. INPROGRESS, COMMITTED, ABORTED are as their literal meanings.
UNDO means a user transaction that has not been started or an InnoDB internal
transaction, which occupies an id but is not maintained by our system.

TIMETOTRX(val1, val2, val3)：

- val1 is of type datetime. val2 and val3 are decimals in seconds.
- Get the statuses of transactions which are committed during [val1-val2, val1+val3], i.e.,

TIMETOTRX(“2020-01-01 00:00:00”, 60, 60) gets transactions which are committed from
2019-12-31 23:59:00 to 2020-01-01 00:01:00.

An accurate transaction id is required by temporal transaction ID query, and it can be
speculated with TIMETOTRX.

CURRENTTRX()

- Get the max transaction ID for now.

For example,
a. An ongoing transaction 2677 is in INPROCESS state, and its FINISH_TIME is 1970-01-01

08:00:00, which is an unset datetime value.
b. Transaction 2679 is in UNDO state, and its STRAT_TIME and FINISH_TIME are both 1970-

01-01 08:00:00, while the max transaction id is 2689, so 2679 is an InnoDB internal
transaction.

c. The max transaction id is the next one to be allocated. 2689 and its successors are all in
UNDO state.

Get Metadata

No newly introduced syntax.

Current and history flags are added into SHOW CREATE TABLE output and
INFORMATION_SCHEMA.TABLES.

For example:
In SHOW CREATE TABLE output, current table is marked as /*FLASHBACK ORIGINAL */，
history table is marked as /*FLASHBACK HISTORICAL*/.

In INFORMATION_SCHEMA.TABLES，current table has ORIG_TABLE=YES，history table has
HIST_TABLE=YES.

Transaction Log

Transaction statuses are kept in transaction logs, which locate in datadir/trx_log. Transaction
log files are named as tlog_0, tlog_1, tlog_2, …, and each of them is up to 1M.
For example：

Default History Tablespace

Default history tablespace is used when creating a history table without giving history
tablespace.
The default history tablespace is named as ibhistory, and the data file is ibhistory.ibd.
For example：

	Manual
	Feature Introduction
	SQL
	Create Temporal Table
	Temporal Query
	Transaction Status Query
	Get Metadata

	Transaction Log
	Default History Tablespace

