
Design and Implementation

This document mainly consists of 4 parts, which are:

- Metadata management. Where are history data kept? What is modified to data dictionary?

- Data manipulation. What happens when carrying out DML?

- System running. Purge thread and history data restoration.

- Temporal query. Procedure of temporal query and history data visibility.

Definition

Data statuses are defined as follows:

Current State: Under MVCC or lock-based concurrency control, the latest data version is in

current state.

Transitional State: Under MVCC, some active but not the latest transactions are reading a

data version, while the latest transaction changes the data, then the version being read is

between Current State and Historical State, that is so-called Transactional State. In

MySQL/InnoDB, transitional data locate in undo and are to be historical finally.

Historical State: Under MVCC, the data version generated by the transaction prior to the

smallest transaction in the active transaction list is a historical version. Under lock-based

concurrency control, after a transaction commit, the version before commit is in historical

state. In MySQL/InnoDB, historical data locate in undo and are to be purged.

Current Table: A table keeping current state data.

History table: A table keeping historical data.

Restore: A procedure moving historical data from undo to history table.

Metadata Management

For a table t with temporal needs, create a table t_history. Table t is a current table and

t_history is a history table. DML/DQL/DDL/Purge on current, history and ordinary (not current

nor history) tables are different.

SQL

Syntax is extended to create current and history table in a single statement.

CREATE TABLE [IF NOT EXISTS] tbl_name (create_definition,...)[table_options][WITH

TEMPORAL]

table_options:

 table_option[[,] table_option] ...

table_option:

 AUTO_INCREMENT [=] value

 | ...

 | HIST_TABLESPACE [=] value

- WITH TEMPORAL: Denotes a temporal need so that history table is to be created.

- HIST_TABLESPACE: Tablespace of history table. Default history tablespace ibhistory is

used if HIST_TABLESPACE is not given.

- CREATE LIKE、CREATE SELECT、TEMPORARY、PARTITION are not supported.

High Level Architecture

- As SQL:2011, current table stores current data, history table stores historical versions.

- Data dictionary distinguishes current, history and ordinary tables, so that some constraints

can be made, i.e., temporal query doesn’t work on ordinary tables, only old versions of a

current table are restored, history tables cannot be accessed directly.

- Insert, update, delete on history table are prohibited for the reason of data protection.

Considering the data growth, a super user in socket connection could make delete on

history table, while insert and update are still prohibited.

- Direct query on history table is prohibited, use temporal query on current table to access

historical versions instead. This is what SQL:2011 regulates.

- DDL on current and history table is prohibited, because a synchronous altering on current

and history table is not implemented and altering on each table separately may result in

inconsistent schema.

- History and current table get the same schema. Historical data and current data are in

the same format and structure, the only difference is lifetime.

- Use SHOW CREATE TABLE, DESCRIBE or query information_schema to see current and

history tables’ schemas.

- An extra index on InnoDB system column DB_TRX_ID is created for history table to speed

up query in the dimension of transaction id.

- History table is kept in an isolated tablespace so that current and history date can be

stored in different storage media, i.e., SSD for current table, HDD for history table.

Low Level Design

Modified code:

Extend CREATE TABLE syntax

sql/sql_yacc.yy, sql/lex.h, sql/gen_lex_token.cc

CREATE TABLE Procedure in SQL Layer

To create current and history tables in a single statement.

sql/sql_table.cc

- Function mysql_create_table

For a create statement with WITH TEMPORAL, mysql_create_table invokes

mysql_create_table_inner to create a current table, then

mysql_prepare_create_history_table to prepare for history table, and

mysql_create_table_inner to create a history table.

For a create statement without WITH TEMPORAL, mysql_create_table_inner is invoked to

create an ordinary table.

- Function mysql_prepare_create_history_table

Prepare for creating a history table, i.e., concatenate the history table’s name, make a

history table TABLE_LIST object, etc.

- Function mysql_create_table_inner

MySQL original mysql_create_table is divided, and mysql_create_table_inner creates a

table factually.

Distinguish Current/History/Ordinary Tables

Add fields or flags to distinguish current, history and ordinary tables in dd, table cache and

innobase.

sql/dd/types/abstract_table.h

- Class Abstract_table

Add member attributes hist_tbl and orig_tbl of bool type.

hist_tbl==1&&orig_tbl==0→ history table; hist_tbl==0&&orig_tbl==1→current table;

hist_tbl==0&&orig_tbl==0→ordinary table; hist_tbl==1&&orig_tbl==1→impossible.

sql/dd/dd_table.cc

- Function fill_dd_table_from_create_info

It is invoked when creating table and calls Abstract_table::set_hist or

Abstract_table::set_orig in accordance with HA_CREATE_INFO, which knows whether the

create statement contains WITH TEMPORAL.

sql/dd/impl/types/abstract_table_impl.cc

- Function Abstract_table_impl::store_attributes

Serialize Abstract_table.hist_tbl and orig_tbl.

- Function Abstract_table_impl::restore_attributes

Deserialize Abstract_table.hist_tbl and orig_tbl.

sql/table.h

- Struct TABLE_LIST

Member attributes hist_tbl and orig_tbl are added. In server layer, use TABLE_LIST to see

whether it’s a current, history or ordinary table.

- Struct TABLE

Member attributes hist_tbl and orig_tbl are added.

storage/innobase/include/dict0mem.h

- Macro DICT_TF2_ORIG_TABLE, DICT_TF2_HIST_TABLE

Add two bitmasks DICT_TF2_ORIG_TABLE and DICT_TF2_HIST_TABLE. In InnoDB layer, use

dict_table_t::flags2 to see whether it’s a current, history or ordinary table.

create_table_info_t::innobase_table_flags() sets flags2 when creating a table.

dd_fill_dict_table() sets flags2 when opening a table.

Constraints on Current/History/Ordinary Tables

sql/sql_base.cc

- Function open_table

After MySQL Server bootstraps, for the first time opening the table, metadata is read from

dd, and set_and_check_temporal is called to set TABLE_LIST.hist_tbl and orig_tbl. Then

TABLE::init() sets TABLE.hist_tbl and orig_tbl in accordance with TABLE_LIST object.

Subsequent opening the same table won’t access dd, loads TABLE object from table cache

instead. Then set_and_check_temporal sets TABLE_LIST.hist_tbl and orig_tbl according to

TABLE object.

- Function set_and_check_temporal

Called by open_table.

Set TABLE_LIST.hist_tbl and orig_tbl in accordance with TABLE object or dd.

It also:

a. Raises error if DDL/DML/DQL accesses history table directly. Super user in socket

connection is allowed to delete.

b. Checks that only select statement could contain temporal hint. (This is better to be

done in parsing phase.)

c. Checks that a temporal query can only work on a current table.

Transaction ID Index on History Table

storage/innobase/handler/ha_innodb.cc

- Function create_table_info_t::create_table

Calls create_trx_id_index if it’s creating a history table.

- Function create_trx_id_index

Creates a secondary index on InnoDB system column DB_TRX_ID.

Display Current/History Mark

SHOW CREATE TABLE, DESCRIBE and information_schema.tables display current and history

marks.

sql/sql_show.cc

- Function store_create_info

Appends string “/*FLASHBACK ORIGINAL*/” or “/*FLASHBACK HISTORICAL*/” to display

info according to TABLE_LIST::orig_tbl and hist_tbl.

sql/dd/impl/tables/tables.cc

- Function Tables::Tables

Add fields has_history_table and is_history_table by m_target_def.add_field.

sql/dd/impl/system_views/tables.cc

- Function Tables_base::Table_base

Add fields HIST_TABLE and ORIG_TABLE by m_target_def.add_field. HIST_TABLE is

defined as Tables.is_history_table and ORIG_TABLE is defined as Tables.has_history_table.

Data Manipulation

High Level Architecture

- DML syntax stays unchanged.

- DML on history table is prohibited.

- Update and delete on current table make data status transfer from current state to

historical state and data version move from current table to undo segment.

Low Level Design

- Some extra operations are made when data transfers from current state to transitional

state, see System Column DB_END_TRX_ID.

System running

Purge threads clean up old data versions periodically. We modify the purge procedure to

restore the old versions into history table.

Requirements：

- Every version gets restored, no one is lost.

- No duplicated versions in history table.

- Restore current table’s old versions only.

High Level Architecture

Purge threads scan undo segment and clean up historical data periodically.

Some extra steps are attached in purge procedure:

- If the version being purged is from ordinary table, do what purge originally did.

- If the version being purged is from current table, then:

◼ If it’s an in-place update undo record, construct the old version with its succeeding

version and the undo record, and insert it into history table.

◼ If it’s a delete marked undo record, put the delete marked version and all the

preceding versions into history table. For example, there are 3 versions, v0 – v1 – v2,

v0 and v1 are generated by in-place update and v2 is a delete marked version.

When purging v2: (1) v2 is restored; (2) v2 + undo rec1 → v1, v1 is restored; (3) v1

+ undo rec0 → v0, v0 is restored.

The reasons why we restore all preceding versions when a delete marked version is

being purged are:

(a) When a purge thread cleans up several versions with the same primary key(which

means the same user record), the latest version is cleaned up first. For example, v0,

v1, v2 are 3 versions with the same pk, v0 is the oldest and v2 is the newest, then

purge thread cleans up them in the order of v2, v1, v0.

(b) After a delete marked version is purged, the data vanishes from table, while the

in-place update undo records need newer versions to construct the older ones. For

example, v2 is cleaned up, then it is undoable to construct v1 by v2 + undo rec1,

not even v1 + undo rec0 → v0. So, we have to restore all preceding versions as a

delete marked version is purged, or in-place update versions can be lost.

After old versions are restored into history table, purge threads clean up the data from

current table.

Low Level Design

Modified code:

Restore In-Place Updated Version

storage/innobase/row/row0purge.cc

- Function row_purge_upd_exist_or_extern_func

This function cleans up old versions generated by in-place update, and calls

row_purge_his_restore_single_ver if the undo record belongs to a current table.

- Function row_purge_his_restore_single_ver

Restores a single version to history table.

◼ Makes a que_thr_t object for insert on history table by calling

row_purge_his_restore_prepare_thr.

◼ Copies the current version rec to prev_vers with rec_copy.

◼ row_upd_rec_in_place is called to backtrack prev_vers to the previous version, using

purge_node_t::update.

◼ Opens history table with row_purge_his_restore_open_table.

◼ row_ins_clust_index_entry and row_ins_sec_index_entry are called to put the old

versions into history table.

◼ trx_commit and trx_free_for_background end the insert transaction on the history

table.

◼ Closes history table with row_purge_his_restore_close_table.

Restore Delete-Marked Version

storage/innobase/row/row0purge.cc

- Function row_purge_remove_clust_if_poss_low

Cleans up delete marked version. If the delete marked version belongs to a current table,

row_purge_his_restore_multi_vers is called to restore all the preceding versions to history

table.

- Function row_purge_his_restore_multi_vers

◼ Makes a que_thr_t object for insert on history table by calling

row_purge_his_restore_prepare_thr.

◼ Opens history table with row_purge_his_restore_open_table.

◼ Backtracks the version chain:

◆ Constructs the prior version with trx_undo_prev_version_build.

◆ Inserts the prior version into history table with row_ins_clust_index_entry and

row_ins_sec_index_entry.

◼ trx_commit and trx_free_for_background end the insert transaction on the history

table.

◼ Closes history table with row_purge_his_restore_close_table.

- Function row_purge_his_restore_prepare_thr

A que_thr_t object, with a trx_t object in it, is set up for insert operation.

- Function row_purge_his_restore_open_table

Calls dd_table_open_on_name and lock_table to open and lock history table.

- Function row_purge_his_restore_close_table

Calls dd_table_close to close history table as restoration finishes.

Temporal query

Temporal query retrieves current, transitional and historical data.

SQL

Extend syntax to support temporal query.

SELECT

[ALL | DISTINCT | DISTINCTROW] ...

select_expr [, select_expr ...]

[FROM table_references [WHERE where_condition] ...]

table_references:

 tbl_name [[AS] alias] [index_hint_list] [temporal_hint]

temporal_hint:

 SYSTEM TIME AS OF value [ONLY HISTORY]

 | SYSTEM TIME FROM value1 TO value2 [ONLY HISTORY]

 | SYSTEM TRANSACTION value [ONLY HISTORY]

- tbl_name is a current table.

- temporal_hint is only supported in select. Update and delete with temporal_hint raise

error

- ONLYT HISTORY queries history table only, and current table is skipped.

- Illustrate the semantics of temporal_hint with the diagram below.

A sketch diagram is given for the purpose of illustration. It is not what MySQL Client shows.

Pk Version Begin Tid End Tid Begin ts End ts

1 V0 2000 2003 T0 T1

1 V1 2003 2004 T1 T3

1 V2 2004 T3

Pk represents a user record.

Version represents a unique data version of the user record.

Begin Tid and End Tid are the transactions which created and removed the data version.

Begin ts and Edn ts are the timestamp when Begin Tid and End Tid were committed.

◼ AS OF value. A time-point query retrieves the data version which was/is in current

state at the value time. For example,

select * from t system time as of T2 where pk=1 gets V1

select * from t system time as of T1 where pk=1 gets V1. V0 is a history version at

T1.

◼ FROM value1 TO value2. A time-range query retrieves the data versions was/is in

current state during value1~value2 time. It requires a data version’s lifetime

overlapping the given time range.

select * from t system time from T0 to T2 where pk=1 gets V0 and V1，because

[V0.BeginTs, V0.EndTs) ∩ [T0, T2] ≠ø，[V1.BeginTs, V1.EndTs) ∩ [T0, T2] ≠ø

◼ TRANSACTION value. Transaction ID query retrieves the data versions created or

removed by this transaction.

select * from t system transaction 2003 where pk=1 gets V0 and V1. Transaction

2003 removed V0 and created V1.

High Level Architecture

- Historical data visibility check.

Identifying when a version was created and removed is the key to check history visibility.

◼ System columns – Version’s lifecycle in the dimension of transaction ID

InnoDB system column DB_TRX_ID represents the transaction that created the data

version. An extra column DB_END_TRX_ID is introduced to denote the transaction

that removed the data version, i.e., DB_TRX_ID is an insert transaction and

DB_END_TRX_ID is a delete one.

DB_END_TRX_ID is UINT64_MAX as a data version is newly inserted.

DB_END_TRX_ID of an old version is written into undo log as the version is removed

by an update or delete. When doing purge or temporal query, DB_END_TRX_ID is

extracted from the undo log and written to the old version.

DB_TRX_ID and DB_END_TRX_ID denote a version’s lifecycle in the dimension of

transaction ID. Besides, a correspondence between transaction ID and physical time

is needed, or it’ll be hard to understand the lifecycle.

◼ Transaction Status Management – A correspondence between transaction ID and

physical time

Transaction Status Management maintains ID, status, start time and finish time of a

transaction. The status is one of {INPROGRESS, COMMITTED, ABORTED, UNDO}.

INPROGRESS, COMMITTED and ABORTED are as their literal meanings. UNDO

means a user transaction that has not been started or an InnoDB internal transaction,

which occupies an id but is not maintained by our system.

A transaction log record is 15Byte with 1Byte for status, 7Byte for start time and

7Byte for finish time. Sizes of a transaction log file and a page are predefined and

constant, then transaction ID and {file number, page number, in-page offset} share

a one-to-one mapping.

When a transaction begins, INPROGRESS and start time are logged. When a

transaction finishes, COMMITTED or ABORTED and finish time are logged.

Finish time matters in history visibility check, cause a committed transaction did

create or remove a data version.

Check whether a version is visible in following steps:

1. Get DB_TRX_ID and DB_END_TRX_ID fields and find out the committed time of them.

The physical times when the version is created and removed, we call them begin_ts

and end_ts, are determined.

2. For an AS OF value query, a version is visible if begin_ts <= value < end_ts.

3. For a FROM value1 TO value2 query, a version is visible if begin_ts <= value2 &&

end_ts > value1.

4. For a TRANSACTION value query, a version is visible if DB_TRX_ID==value ||

DB_END_TRX_ID==value.

- Concurrency between purge and query

Temporal query in three stages: 1. Get current version from current table. 2. Get

transitional and historical versions from undo segment. 3. Get historical versions from

history table.

A query thread can not access an undo record being purged, which may lead to a missing

version and incomplete result set. For example, there is a version chain v0 – v1 – v2,

among which v0 is a historical version in history table, v1 is a historical version in undo

segment and v2 is the current version in current table. A temporal query got v2 from

current table and is trying to get a prior version from undo segment, but v1 cannot be

read because it’s being purged at the meantime. The temporal query heads to history

table then. When the history table is queried, it happens that v1 hasn’t been restored yet,

then only v2 is returned. Finally, the temporal query got an incomplete result set with v1

being missing.

To solve this, we add an MDL to control the concurrency between purge and temporal

query, with the cost of purge efficiency. We haven’t tested specifically how bad purge is

affected, but it’s definite that the more versions there are, the more time temporal query

costs, the slower purge carries out.

- Query transaction status

◼ TRXTOTIME(val1, val2, val3)

val1 is transaction id in string format. val2 and val3 are decimals.

Get the statuses of transactions whose ids are from [val1-val2, val1+val3], i.e.,

TRXTOTIME(“2003”, 1, 1) gets transaction 2002, 2003, 2004, and 2005.

◼ TIMETOTRX(val1, val2, val3)：

val1 is of type datetime. val2 and val3 are decimals in seconds.

Get the statuses of transactions which are committed during [val1-val2, val1+val3],

i.e., TIMETOTRX(“2020-01-01 00:00:00”, 60, 60) gets transactions which are

committed from 2019-12-31 23:59:00 to 2020-01-01 00:01:00.

◼ CURRENTTRX()：Get the max transaction ID for now.

Low Level Design

Modified code：

Extend syntax

sql/sql_yacc.yy, sql/lex.h

Extending Server with Temporal Ability

a) Get the type of temporal query, including as of, from to and transaction id, and pass it to

InnoDB.

b) Constraints: Only SQLCOM_SELECT on current table works.

c) Query current and history tables in turn.

Temporal Hint

sql/table.h

- Class Temporal_hint

During parsing, makes a temporal_hint object, denoting temporal type and value, for the

TABLE_LIST object. TABLE_LIST.temporal_hint is null for a non-temporal query.

sql/sql_class.cc

- Function thd_get_table_temporal_hint

Passes temporal_hint to InnoDB from Server.

Open Current and History Tables

A temporal query on a current table opens current and history tables.

sql/sql_select.cc

- Function Sql_cmd_dml::prepare

Calsl Sql_cmd_dml::prepare_tempral to open history table for a temporal query.

Sql_cmd_select::prepare_temporal calls dml_prepare_temporal, while prepare_temporal

of other commands does nothing.

- Function dml_prepare_temporal

Traverses the queried tables, and calls make_his_table_list to add a history TABLE_LIST

object into LEX.query_tables if a current table is found. Tables in LEX.query_tables are to

be opened.

Constraint

sql/sql_base.cc

- Function set_and_check_temporal

Called by open_table.

TABLE_LIST.temporal_hint denotes whether it’s a temporal query. Only SQLCOM_SELECT

on a current table is allowed for a temporal query.

Query Current and History Tables in Order

include/my_base.h

- Macro HA_END_OF_ORIG_SCAN

A newly introduced error code.

After a temporal query finishes on the current table, HA_END_OF_ORIG_SCAN is returned

instead of HA_ERR_END_OF_FILE, so that temporal query turns to history table.

sql/sql_executor.cc

- Function sub_select

sub_select gets HA_END_OF_ORIG_SCAN and turns to history table.

Extending InnoDB with Temporal Ability

a) Visibility check for temporal query.

b) Transaction status management.

Temporal Query Hint

storage/innobase/include/row0mysql.h

- Struct row_prebuilt_t

◼ We add additional member Temporal_hint* t_hint. After function build_template

builds row_prebuilt_t, function thd_get_table_temporal_hint will obtain

Temporal_hint and store in row_prebuilt_t.t_hint

◼ We add additional member n_transitional_vers_fetched，which will be used in

function row_vers_build_for_flashback_range_read

Visibility Check for Temporal Query

storage/innobase/handler/ha_innodb.cc

- Function index_read and general_fetch

We use the bitmasks, dict_table_t.flags2 & DICT_TF2_ORIG_TABLE and dict_table_t.flags2 &

DICT_TF2_HIST_TABLE, to check whether we are now querying a current table or a history

table, the struct row_prebuilt_t.t_hint is used to check whether this query is temporal.

We conduct the temporal query with the following steps:

◼ Query current table

◆ row_search_mvcc queries the current table.

◆ Current table is skipped if it’s an ONLY HISTORY temporal query.

◼ Query history table

◆ open_his_dict_table opens history table

◆ prepare_prebuilt_before_his_scan modifies m_prebuilt so that it searches

history table.

◆ row_search_mvcc queries history table.

◆ reset_prebuilt_after_his_scan resets m_prebuilt.

◆ close_his_dict_table closes history table.

- Function open_his_dict_table

Gets history table’s name by splicing current table’s name and HISTORY_TABLE_POSTFIX,

and calls function dd_table_open_on_name to open the history table.

- Function prepare_prebuilt_before_his_scan

m_prebuilt is a member of ha_innobase and is used to retrieve records.

ha_innobase object of current table is used to query both current and history table. To

search history table correctly, prepare_prebuilt_before_his_scan adapts

ha_innobase::m_prebuilt to the history table. After query completion,

reset_prebuilt_after_his_scan resets ha_innobase::m_prebuilt.

storage/innobase/row/row0sel.cc

- Function row_search_mvcc

row_prebuilt_t.t_hint knows the type of temporal query:

◼ AS OF

◆ For history table, call function lock_clust_rec_flashback_point_read_sees to fetch

the visible version.

◆ For current table, call lock_clust_rec_flashback_point_read_sees to check

whether the latest version is visible, if not, call function

row_sel_build_prev_vers_for_flashback_point to backtrack previous versions.

◼ FROM TO

Call function row_sel_build_prev_vers_for_flashback_range to retrieve multiple

visible versions, if there are no more visible versions, goto next_rec.

◼ TRANSACTION ID

Call function row_sel_build_prev_vers_for_flashback_trx_id to retrieve multiple visible

versions, if there are no more visible versions, goto next_rec.

- Function row_sel_build_prev_vers_for_flashback_point

Call function row_vers_build_for_flashback_point_read to obtain visible versions from

undo segment.

- Function row_vers_build_for_flashback_point_read

Backtrack the version chain till a visible version is found or there are no older versions.

◼ Call function trx_undo_prev_version_build to construct a previous version prev_vers.

◼ Call functions row_get_rec_trx_id and row_get_rec_end_trx_id to get prev_vers’

DB_TRX_ID and DB_END_TRX_ID, then call function read_tlog_by_trx_id to get the

commit time of DB_TRX_ID and DB_END_TRX_ID respectively. See the temporal

query High Level Architecture for visibility check.

- Function row_sel_build_prev_vers_for_flashback_range

Calls row_vers_build_for_flashback_range_read to retrieve visible versions from undo

segment.

- Function row_vers_build_for_flashback_range_read

◼ FROM TO query may return multiple versions for a single primary key, and these

versions are kept in a result set cache. The number of versions maybe exceed the

capacity of the cache, so that fractional backtrack is possible. To avoid retrieve the

same version more than once, a member n_transitional_vers_fetched is introduced.

n_transitional_vers_fetched denotes the number of versions that have been

examined, so that the later backtrack won’t bother with the processed versions.

For example: The capacity of cache is 3. There are versions v0~v5, the first time

v3~v5 are cached, and n_transitional_vers_fetched is set to 3. The second time, v3-

v5 are skipped and v0~v2 are cached. Afterall, v0~v5 are returned to client.

◼ Backtrack the version chain till there is no older versions or the result cache is full.

Append the visible versions to result set cache.

- Function row_sel_build_prev_vers_for_flashback_trx_id

Calls row_vers_build_for_flashback_trx_id_read to get versions created or removed by the

given transaction ID from undo segment.

- Function row_vers_build_for_flashback_trx_id_read

◼ Backtrack the version chain till there is no older version or the cache is full. Append

the versions operated by the given transaction ID to result set cache.

- Function row_sel_flashback_cache_mysql_rec

Cache versions in handler::m_record_buffer which is to be returned to Server layer.

storage/innobase/lock/lock0lock.cc

- Function lock_clust_rec_flashback_point_read_sees

Called by function row_search_mvcc during the AS OF query to check whether the latest

data version is visible.

Calls function row_get_rec_trx_id and row_get_rec_end_trx_id to get DB_TRX_ID and

DB_END_TRX_ID, and then calls function read_tlog_by_trx_id to get the commit time of

DB_TRX_ID and DB_END_TRX_ID respectively. See High Level Architecture for visibility

check.

System Column DB_END_TRX_ID

storage/innobase/include/data0type.h

- Macro DB_END_TRX_ID

DB_END_TRX_ID is appended after DB_ROLL_PTR.

storage/innobase/dict

- Function dict_table_add_system_columns

Creates a DB_END_TRX_ID system column when building a table. This field is unnecessary

for ordinary table but is still introduced to keep the system columns consistent.

storage/innobase/row/row0ins.cc

- Function row_ins_step

DB_END_TRX_ID is writen as UINT64_MAX as a new version generated.

storage/innobase/trx/trx0rec.cc

- Function trx_undo_page_report_modify

Update and delete write undo by calling trx_undo_page_report_modify. The

DB_END_TRX_ID field of the undo record is written as the update or the delete transaction ID

at this moment and is to be read to construct a prior version later.

Transaction Status Management

storage/innobase/include/tlog0tlog.h

storage/innobase/tlog/tlog0tlog.cc

- Macros

◼ TLOG_SIZE_BYTE: size of a transaction status log record

◼ PAGE_SIZE_BYTE: size of a physical page

◼ FILE_SIZE_BYTE: size of a transaction status log file

◼ TLOG_NUM_PER_PAGE: the number of transaction status logs in a page, equals to

PAGE_SIZE_BYTE / TLOG_SIZE_BYTE

We define transaction ID of the first log (in the first page of the first file) as 0. Then we

have a one-to-one correspondence between transaction ID and {file number, page number,

in-page offset}.

file no = transaction id / (FILE_SIZE_BYTE / TLOG_SIZE_BYTE)

page no = (transaction id % (FILE_SIZE_BYTE / TLOG_SIZE_BYTE)) / PAGE_SIZE_BYTE

page offset = (transaction id % (FILE_SIZE_BYTE / TLOG_SIZE_BYTE)) % PAGE_SIZE_BYTE

- Interfaces

◼ Function record_tlog_low

Write transaction status log when transaction starts, commits, and rollback.

◼ Function record_tlog_write_log

Write redo log ahead of writing transaction status log.

storage/innobase/include/tlog0lru.h

storage/innobase/tlog/tlog0lru.cc

- The transaction log page forms an LRU List, of which the size is LRU_CACHE_SIZE

Querying Transaction Status

storage/innobase/handler/ha_innodb.cc

- Interface trxtotime

Call function read_tlog_by_trx_ids to obtain transaction status logs by transaction IDs.

- Interface timetotrx

Call function read_tlog_finish_between to obtain transaction status logs by a specific time

interval.

- Interface currenttrx

Call function trx_sys_get_max_trx_id to get the max transaction ID for now.

MTR Test

MTR Test Command just as following:

./mtr --suite=main --retry-failure=1 --force --max-test-fail=3000

Native unit test pass rate (main and suites prefixed by innodb only):

Main Innodb Innodb_fts Innodb_gis Innodb_undo Innodb_zip

Failed

261/878

tests, 70.27%

were

successful

Failed

119/335

tests, 64.48%

were

successful

Failed 9/46

tests, 80.43%

were

successful

Failed 11/27

tests, 59.26%

were

successful

All 5 tests

were

successful

Failed 11/20

tests, 45.00%

were

successful

The reason for the failure of the above use cases:

Modifications of the newly introduced system column DB_END_TRX_ID may be inadequate,

resulting in the core or metadata inconsistency in the testcases. Working on it.

Flashback testcases: mysql-test/suite/flashback

Flashback Flashback_info Fselect, Fselect2,

Fselect_complex

Restore Trx_id_index

Test

syntax

Test the DDL

operations

Test temporary

query

Test historical

data restoration

Test secondary

index on the

history table

The pass rate of the additional flashback testcases is taken as 100%.

Testcases would always fail for Result Mismatch because the SQLs contain automatically

generated timestamps, which are different every time we run mtr, while the query result sets

are correct.

Performance Evaluation

Evaluation Environment

CPU
Type Intel(R) Xeon(R) Platinum 8276 CPU @ 2.20GHz

Logical Cores 112

Memory
Total Size 990G：Intel AEP – 128G*8，DDR4 2666 – 16G*12

Swap 0G

Disk /dev/sda Intel S4510 – 480G*1

/dev/nvme0 Intel NVMe – 3.2T*1

Network
Speed 25000Mb/s

Latency 0.030ms

OS

[root@master ~]# lsb_release –a

LSB Version: :core-4.1-amd64:core-4.1-noarch

Description: CentOS Linux release 7.2 (Final)

Evaluation tool

Sysbench 0.5

Parameters

oltp-table-size=2180000

oltp-tables-count=10

max-time=60

Evaulation Results

Update_non_index.lua

Query:

UPDATE " .. table_name .. " SET c='" .. c_val .. "' WHERE id=" .. sb_rand(1, oltp_table_size)

Results:

Client Connections 10 100 200 500 1000 2000

MySQL8 Original

Ordinary Table
31361.73 64415.19 69765.94 69751.01 62251.56 51178.49

MySQL8 Temporal

Ordinary Table
29872.32 65896.73 69508.16 65984.53 58351.66 48745.84

Lost Ratio 4.75% -2.30% 0.37% 5.40% 6.26% 4.75%

MySQL8 Temporal

Current Table
30209.71 65364.77 67867.36 65403.78 58977.45 48149.8

Lost Ration 3.67% -1.47% 2.72% 6.23% 5.26% 5.92%

Analysis:

1. After introducing the flashback function, the update operation on the ordinary table

(without WITH TEMPORAL keywords when being created) introduces up to 6%

performance overhead.

a) The performance loss is mainly caused by the transaction status management.

b) It’s considerable to optimize the transaction status management and adopt a lock-

free LRU strategy to save the overhead.

2. After introducing the flashback function, the update operation on the flashback table

(with WITH TEMPORAL keywords when being created) introduces a maximum of 6%

performance overhead.

a) For the same reason as above.

Select.lua

Query:

SELECT pad FROM ".. table_name .." WHERE id=" .. sb_rand(1, oltp_table_size)

Results:

Client Connections 10 100 200 500

MySQL8 Original

Ordinary Table
202398.12 385787.4 375499.25 369127.8

MySQL8 Temporal

Ordinary Table
192253.8 382550.47 375894.38 369371.19

MySQL8 Temporal

Current Table
195818.31 395471.94 387619.93 375790.26

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 200 500 1000 2000

Q
P
S

sysbench threads

update_non_index.lua

MySQL8 Original Ordinary Table MySQL8 Temporal Ordinary Table

MySQL8 Temporal Current Table

Analysis:

No performance overhead is introduced.

Flashback.lua

Query:

AS OF Query:

SELECT pad FROM ".. table_name .." SYSTEM TIME AS OF '2020-03-23 15:40:30' WHERE id=" ..

sb_rand(1, oltp_table_size)

FROM TO Query:

SELECT pad FROM ".. table_name .." SYSTEM TIME FROM '2020-01-01 00:00:00' TO '2021-

01-01 00:00:00' WHERE id=" .. sb_rand(1, oltp_table_size)

AS_OF ONLY_HISTORY Query:

SELECT pad FROM ".. table_name .." SYSTEM TIME AS OF '2020-03-22 15:40:30' ONLY

HISTORY WHERE id=" .. sb_rand(1, oltp_table_size)

FROM_TO ONLY_HISTORY Query:

SELECT pad FROM ".. table_name .." SYSTEM TIME FROM '2019-01-01 00:00:00' TO '2020-

01-01 00:00:00' ONLY HISTORY WHERE id=" .. sb_rand(1, oltp_table_size)

Results:

Client Connections 10 100 200 500

AS_OF 146584.57 136679.75 133847.66 133819.41

FROM_TO 127565.85 97674.83 96493.24 95640.6

AS_OF ONLY_HISTORY 131939.14 137169.13 130304.69 135173.34

FROM_TO ONLY_HISTORY 116660.24 94984.7 95277.84 94149.06

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

10 100 200 500

Q
P
S

sysbench threads

select.lua

MySQL8 Original Ordinary Table MySQL8 Temporal Ordinary Table

MySQL8 Temporal Current Table

The main performance costs of flashback query are:

a) Obtaining the transaction information from the transaction status log. This can be

reduced by optimizing the transaction log.

b) History version traversal overhead. We have made certain optimizations through the

secondary index on DB_TRX_ID, additionally, we can introduce a targeted index

strategy to optimize the search process of historical versions.

Remaining Problem

- Introducing system column DB_END_TRX_ID results in mtr failures.

Future Work

Current data are critical for OLTP scenarios, while historical data are useful for OLAP

scenarios. Based on our implementation, the granularity of historical data is much smaller

while the accuracy is higher, which has advantages in analytical processing. The current and

historical data could be stored in different storage engines to facilitate the targeted

optimizations of OLTP and OLAP respectively, we call this extension as Hybrid Transaction

and Analytical Cluster (HTAC).

Zoom in HTAC, OLTP cluster is responsible for transactional business, while OLAP system

handles analytical business, like historical data processing. According to the semantics of

query statements and query operations, queries are sent to the specific cluster for processing

through the unified routing module. Considering that OLAP processing takes up a lot of

resources, the separating design of HTAC could minimize the impact to the production OLTP

0

20000

40000

60000

80000

100000

120000

140000

160000

10 100 200 500

Q
P
S

sysbench threads

flashback.lua

AS_OF FROM_TO AS_OF ONLY_HISTORY FROM_TO ONLY_HISTORY

system. Additionally, since the magnitude of historical data is quite large, HTAC is quite

suitable to achieve unlimited storage of historical data by expanding the volume of storage

by HDFS and stuff.

Looking forward to a long-term communication and contribution.

