;; This buffer is for notes you don't want to save, and for Lisp evaluation. ;; If you want to create a file, first visit that file with C-x C-f, ;; then enter the text in that file's own buffer. # Example MySQL config file for large systems. # # This is for a large system with memory = 512M where the system runs mainly # MySQL. # # You can copy this file to # /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options (in this # installation this directory is /usr/local/var) or # ~/.my.cnf to set user-specific options. # # In this file, you can use all long options that a program supports. # If you want to know which options a program supports, run the program # with the "--help" option. # The following options will be passed to all MySQL clients [client] #password = your_password port = 3306 socket = /tmp/mysql.sock default-character-set=utf8 # Here follows entries for some specific programs # The MySQL server [mysqld] port = 3306 socket = /tmp/mysql.sock # The default character set that will be used when a new schema or table is # created and no character set is defined default-character-set=utf8 max_connections=100 default-storage-engine=innodb basedir=D:/MySQL Server 5.0 skip-locking key_buffer = 256M # max_allowed_packet = 1M table_cache = 256 # sort_buffer_size = 1M read_buffer_size = 1M read_rnd_buffer_size = 4M myisam_sort_buffer_size = 16M thread_cache_size = 8 # query_cache_size= 16M # Try number of CPU's*2 for thread_concurrency thread_concurrency = 8 # Don't listen on a TCP/IP port at all. This can be a security enhancement, # if all processes that need to connect to mysqld run on the same host. # All interaction with mysqld must be made via Unix sockets or named pipes. # Note that using this option without enabling named pipes on Windows # (via the "enable-named-pipe" option) will render mysqld useless! # #skip-networking # Replication Master Server (default) # binary logging is required for replication log-bin=mysql-bin # required unique id between 1 and 2^32 - 1 # defaults to 1 if master-host is not set # but will not function as a master if omitted # server-id = 1 # Replication Slave (comment out master section to use this) # # To configure this host as a replication slave, you can choose between # two methods : # # 1) Use the CHANGE MASTER TO command (fully described in our manual) - # the syntax is: # # CHANGE MASTER TO MASTER_HOST=, MASTER_PORT=, # MASTER_USER=, MASTER_PASSWORD= ; # # where you replace , , by quoted strings and # by the master's port number (3306 by default). # # Example: # # CHANGE MASTER TO MASTER_HOST='125.564.12.1', MASTER_PORT=3306, # MASTER_USER='joe', MASTER_PASSWORD='secret'; # # OR # # 2) Set the variables below. However, in case you choose this method, then # start replication for the first time (even unsuccessfully, for example # if you mistyped the password in master-password and the slave fails to # connect), the slave will create a master.info file, and any later # change in this file to the variables' values below will be ignored and # overridden by the content of the master.info file, unless you shutdown # the slave server, delete master.info and restart the slaver server. # For that reason, you may want to leave the lines below untouched # (commented) and instead use CHANGE MASTER TO (see above) # # required unique id between 2 and 2^32 - 1 # (and different from the master) # defaults to 2 if master-host is set # but will not function as a slave if omitted #server-id = 2 # # The replication master for this slave - required #master-host = # # The username the slave will use for authentication when connecting # to the master - required #master-user = # # The password the slave will authenticate with when connecting to # the master - required #master-password = # # The port the master is listening on. # optional - defaults to 3306 #master-port = # # binary logging - not required for slaves, but recommended #log-bin=mysql-bin # Point the following paths to different dedicated disks #tmpdir = /tmp/ #log-update = /path-to-dedicated-directory/hostname # Uncomment the following if you are using BDB tables #bdb_cache_size = 64M #bdb_max_lock = 100000 # Uncomment the following if you are using InnoDB tables #innodb_data_home_dir = /usr/local/var/ #innodb_data_file_path = ibdata1:10M:autoextend #innodb_log_group_home_dir = /usr/local/var/ #innodb_log_arch_dir = /usr/local/var/ # You can set .._buffer_pool_size up to 50 - 80 % # of RAM but beware of setting memory usage too high #innodb_buffer_pool_size = 256M #innodb_additional_mem_pool_size = 20M # Set .._log_file_size to 25 % of buffer pool size #innodb_log_file_size = 64M #innodb_log_buffer_size = 8M #innodb_flush_log_at_trx_commit = 1 #innodb_lock_wait_timeout = 50 # The number of open tables for all threads. Increasing this value # increases the number of file descriptors that mysqld requires. # Therefore you have to make sure to set the amount of open files # allowed to at least 4096 in the variable "open-files-limit" in # section [mysqld_safe] table_cache = 2048 # The maximum size of a query packet the server can handle as well as # maximum query size server can process (Important when working with # large BLOBs). enlarged dynamically, for each connection. max_allowed_packet = 16M # The size of the cache to hold the SQL statements for the binary log # during a transaction. If you often use big, multi-statement # transactions you can increase this value to get more performance. All # statements from transactions are buffered in the binary log cache and # are being written to the binary log at once after the COMMIT. If the # transaction is larger than this value, temporary file on disk is used # instead. This buffer is allocated per connection on first update # statement in transaction binlog_cache_size = 1M # Maximum allowed size for a single HEAP (in memory) table. This option # is a protection against the accidential creation of a very large HEAP # table which could otherwise use up all memory resources. max_heap_table_size = 64M # Sort buffer is used to perform sorts for some ORDER BY and GROUP BY # queries. If sorted data does not fit into the sort buffer, a disk # based merge sort is used instead - See the "Sort_merge_passes" # status variable. Allocated per thread if sort is needed. sort_buffer_size = 8M # This buffer is used for the optimization of full JOINs (JOINs without # indexes). Such JOINs are very bad for performance in most cases # anyway, but setting this variable to a large value reduces the # performance impact. See the "Select_full_join" status variable for a # count of full JOINs. Allocated per thread if full join is found join_buffer_size = 8M # Query cache is used to cache SELECT results and later return them # without actual executing the same query once again. Having the query # cache enabled may result in significant speed improvements, if your # have a lot of identical queries and rarely changing tables. See the # "Qcache_lowmem_prunes" status variable to check if the current value # is high enough for your load. # Note: In case your tables change very often or if your queries are # textually different every time, the query cache may result in a # slowdown instead of a performance improvement. query_cache_size = 64M # Only cache result sets that are smaller than this limit. This is to # protect the query cache of a very large result set overwriting all # other query results. query_cache_limit = 2M # If your system supports the memlock() function call, you might want to # enable this option while running MySQL to keep it locked in memory and # to avoid potential swapping out in case of high memory pressure. Good # for performance. #memlock # Table type which is used by default when creating new tables, if not # specified differently during the CREATE TABLE statement. default_table_type = INNODB # Log slow queries. Slow queries are queries which take more than the # amount of time defined in "long_query_time" or which do not use # indexes well, if log_long_format is enabled. It is normally good idea # to have this turned on if you frequently add new queries to the # system. log_slow_queries # All queries taking more than this amount of time (in seconds) will be # trated as slow. Do not use "1" as a value here, as this will result in # even very fast queries being logged from time to time (as MySQL # currently measures time with second accuracy only). long_query_time = 2 # Log more information in the slow query log. Normally it is good to # have this turned on. This will enable logging of queries that are not # using indexes in addition to long running queries. log_long_format # *** INNODB Specific options *** # Use this option if you have a MySQL server with InnoDB support enabled # but you do not plan to use it. This will save memory and disk space # and speed up some things. #skip-innodb # Additional memory pool that is used by InnoDB to store metadata # information. If InnoDB requires more memory for this purpose it will # start to allocate it from the OS. As this is fast enough on most # recent operating systems, you normally do not need to change this # value. SHOW INNODB STATUS will display the current amount used. innodb_additional_mem_pool_size = 16M # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and # row data. The bigger you set this the less disk I/O is needed to # access data in tables. On a dedicated database server you may set this # parameter up to 80% of the machine physical memory size. Do not set it # too large, though, because competition of the physical memory may # cause paging in the operating system. Note that on 32bit systems you # might be limited to 2-3.5G of user level memory per process, so do not # set it too high. innodb_buffer_pool_size = 1G # InnoDB stores data in one or more data files forming the tablespace. # If you have a single logical drive for your data, a single # autoextending file would be good enough. In other cases, a single file # per device is often a good choice. You can configure InnoDB to use raw # disk partitions as well - please refer to the manual for more info # about this. innodb_data_file_path = ibdata1:50M:autoextend # Set this option if you would like the InnoDB tablespace files to be # stored in another location. By default this is the MySQL datadir. #innodb_data_home_dir = # Number of IO threads to use for async IO operations. This value is # hardcoded to 4 on Unix, but on Windows disk I/O may benefit from a # larger number. innodb_file_io_threads = 12 # If you run into InnoDB tablespace corruption, setting this to a nonzero # value will likely help you to dump your tables. Start from value 1 and # increase it until you're able to dump the table successfully. #innodb_force_recovery=1 # Number of threads allowed inside the InnoDB kernel. The optimal value # depends highly on the application, hardware as well as the OS # scheduler properties. A too high value may lead to thread thrashing. innodb_thread_concurrency = 16 # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit = 1 # Speed up InnoDB shutdown. This will disable InnoDB to do a full purge # and insert buffer merge on shutdown. It may increase shutdown time a # lot, but InnoDB will have to do it on the next startup instead. #innodb_fast_shutdown # The size of the buffer InnoDB uses for buffering log data. As soon as # it is full, InnoDB will have to flush it to disk. As it is flushed # once per second anyway, it does not make sense to have it very large # (even with long transactions). innodb_log_buffer_size = 8M # Size of each log file in a log group. You should set the combined size # of log files to about 25%-100% of your buffer pool size to avoid # unneeded buffer pool flush activity on log file overwrite. However, # note that a larger logfile size will increase the time needed for the # recovery process. innodb_log_file_size = 128M # Total number of files in the log group. A value of 2-3 is usually good # enough. innodb_log_files_in_group = 2 # Location of the InnoDB log files. Default is the MySQL datadir. You # may wish to point it to a dedicated hard drive or a RAID1 volume for # improved performance #innodb_log_group_home_dir # Maximum allowed percentage of dirty pages in the InnoDB buffer pool. # If it is reached, InnoDB will start flushing them out agressively to # not run out of clean pages at all. This is a soft limit, not # guaranteed to be held. innodb_max_dirty_pages_pct = 70 # The flush method InnoDB will use for Log. The tablespace always uses # doublewrite flush logic. The default value is "fdatasync", another # option is "O_DSYNC". #innodb_flush_method=O_DSYNC # How long an InnoDB transaction should wait for a lock to be granted # before being rolled back. InnoDB automatically detects transaction # deadlocks in its own lock table and rolls back the transaction. If you # use the LOCK TABLES command, or other transaction-safe storage engines # than InnoDB in the same transaction, then a deadlock may arise which # InnoDB cannot notice. In cases like this the timeout is useful to # resolve the situation. innodb_lock_wait_timeout = 120 [mysqldump] quick max_allowed_packet = 16M [mysql] no-auto-rehash # Remove the next comment character if you are not familiar with SQL #safe-updates [isamchk] key_buffer = 128M sort_buffer_size = 128M read_buffer = 2M write_buffer = 2M [myisamchk] key_buffer = 128M sort_buffer_size = 128M read_buffer = 2M write_buffer = 2M [mysqlhotcopy] interactive-timeout [mysqld_safe] # Increase the amount of open files allowed per process. Warning: Make # sure you have set the global system limit high enough! The high value # is required for a large number of opened tables open-files-limit = 8192